Integer graded instanton homology groups for homology three spheres

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Floer Homology of Brieskorn Homology Spheres

Every Brieskorn homology sphere (p; q; r) is a double cover of the 3{sphere ramiied over a Montesinos knot k(p; q; r). We relate Floer homology of (p; q; r) to certain invariants of the knot k(p; q; r), among which are the knot signature and the Jones polynomial. We also deene an integer valued invariant of integral homology 3{spheres which agrees with the {invariant of W. Neu-mann and L. Siebe...

متن کامل

A Monopole Homology for Integral Homology 3-spheres

To an integral homology 3-sphere Y , we assign a well-defined Z-graded (monopole) homology MH∗(Y, Iη(Θ; η0)) whose construction in principle follows from the instanton Floer theory with the dependence of the spectral flow Iη(Θ; η0), where Θ is the unique U(1)-reducible monopole of the Seiberg-Witten equation on Y and η0 is a reference perturbation datum. The definition uses the moduli space of ...

متن کامل

Suspensions of homology spheres

This article is one of three highly influential articles on the topology of manifolds written by Robert D. Edwards in the 1970’s but never published. This article “Suspensions of homology spheres” presents the initial solutions of the fabled Double Suspension Conjecture. The article “Approximating certain cell-like maps by homeomorphisms” presents the definitive theorem on the recognition of ma...

متن کامل

Thoroughly Knotted Homology Spheres

For H n a homology n-sphere, consider the problem of classifying locally flat imbeddings H n•'-• S n+2 up to isotopy. Since any imbedding may be altered by adding knots S n• S n+2, the classification problem is at least as complex as the isotopy classification of knots. Elsewhere [8] we show that there is a natural correspondence between k ot heory and the classification of those imbeddings H n...

متن کامل

Rational Homology 7-Spheres

In this paper we demonstrate the existence of Sasakian-Einstein structures on certain 2-connected rational homology 7-spheres. These appear to be the first non-regular examples of Sasakian-Einstein metrics on simply connected rational homology spheres. We also briefly describe the rational homology 7-spheres that admit regular positive Sasakian structures.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Topology

سال: 1992

ISSN: 0040-9383

DOI: 10.1016/0040-9383(92)90053-k